Valiron’s Theorem in the Unit Ball and Spectra of Composition Operators
نویسنده
چکیده
We prove a version of Valiron’s conjugacy theorem for Schur class mappings of the unit ball of C . As an application we obtain a formula for the spectral radius of composition operators on the ball with Schur class symbols.
منابع مشابه
Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملSpectra of Composition Operators on Algebras of Analytic Functions on Banach Spaces
Let E be a Banach space, with unit ball BE . We study the spectrum and the essential spectrum of a composition operator on H∞(BE) determined by an analytic symbol with a fixed point in BE . We relate the spectrum of the composition operator to that of the derivative of the symbol at the fixed point. We extend a theorem of Zheng to the context of analytic symbols on the open unit ball of a Hilbe...
متن کاملSOME REMARKS ON WEAKLY INVERTIBLE FUNCTIONS IN THE UNIT BALL AND POLYDISK
We will present an approach to deal with a problem of existence of (not) weakly invertible functions in various spaces of analytic functions in the unit ball and polydisk based on estimates for integral operators acting between functional classes of different dimensions.
متن کاملAn extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملCompact weighted Frobenius-Perron operators and their spectra
In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.
متن کامل